3.15.37 \(\int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\) [1437]

3.15.37.1 Optimal result
3.15.37.2 Mathematica [C] (warning: unable to verify)
3.15.37.3 Rubi [A] (verified)
3.15.37.4 Maple [B] (warning: unable to verify)
3.15.37.5 Fricas [F(-1)]
3.15.37.6 Sympy [F]
3.15.37.7 Maxima [F]
3.15.37.8 Giac [F]
3.15.37.9 Mupad [F(-1)]

3.15.37.1 Optimal result

Integrand size = 37, antiderivative size = 379 \[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\frac {2 \sqrt {2} a^2 d^2 \operatorname {EllipticPi}\left (-\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{(-a+b)^{3/2} (a+b)^{3/2} f g^{3/2} \sqrt {d \sin (e+f x)}}-\frac {2 \sqrt {2} a^2 d^2 \operatorname {EllipticPi}\left (\frac {\sqrt {-a+b}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {1+\sin (e+f x)}}\right ),-1\right ) \sqrt {\sin (e+f x)}}{(-a+b)^{3/2} (a+b)^{3/2} f g^{3/2} \sqrt {d \sin (e+f x)}}+\frac {2 a d \sqrt {d \sin (e+f x)}}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}-\frac {2 b (d \sin (e+f x))^{3/2}}{\left (a^2-b^2\right ) f g \sqrt {g \cos (e+f x)}}+\frac {2 b d \sqrt {g \cos (e+f x)} E\left (\left .e-\frac {\pi }{4}+f x\right |2\right ) \sqrt {d \sin (e+f x)}}{\left (a^2-b^2\right ) f g^2 \sqrt {\sin (2 e+2 f x)}} \]

output
-2*b*(d*sin(f*x+e))^(3/2)/(a^2-b^2)/f/g/(g*cos(f*x+e))^(1/2)+2*a^2*d^2*Ell 
ipticPi((g*cos(f*x+e))^(1/2)/g^(1/2)/(1+sin(f*x+e))^(1/2),-(-a+b)^(1/2)/(a 
+b)^(1/2),I)*2^(1/2)*sin(f*x+e)^(1/2)/(-a+b)^(3/2)/(a+b)^(3/2)/f/g^(3/2)/( 
d*sin(f*x+e))^(1/2)-2*a^2*d^2*EllipticPi((g*cos(f*x+e))^(1/2)/g^(1/2)/(1+s 
in(f*x+e))^(1/2),(-a+b)^(1/2)/(a+b)^(1/2),I)*2^(1/2)*sin(f*x+e)^(1/2)/(-a+ 
b)^(3/2)/(a+b)^(3/2)/f/g^(3/2)/(d*sin(f*x+e))^(1/2)+2*a*d*(d*sin(f*x+e))^( 
1/2)/(a^2-b^2)/f/g/(g*cos(f*x+e))^(1/2)-2*b*d*(sin(e+1/4*Pi+f*x)^2)^(1/2)/ 
sin(e+1/4*Pi+f*x)*EllipticE(cos(e+1/4*Pi+f*x),2^(1/2))*(g*cos(f*x+e))^(1/2 
)*(d*sin(f*x+e))^(1/2)/(a^2-b^2)/f/g^2/sin(2*f*x+2*e)^(1/2)
 
3.15.37.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 23.74 (sec) , antiderivative size = 1648, normalized size of antiderivative = 4.35 \[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx =\text {Too large to display} \]

input
Integrate[(d*Sin[e + f*x])^(3/2)/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f* 
x])),x]
 
output
(2*Cot[e + f*x]*(d*Sin[e + f*x])^(3/2)*(a - b*Sin[e + f*x]))/((a^2 - b^2)* 
f*(g*Cos[e + f*x])^(3/2)) - (Cos[e + f*x]^(3/2)*(d*Sin[e + f*x])^(3/2)*((4 
*a*b*(-(b*AppellF1[3/4, -1/4, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2) 
/(-a^2 + b^2)]) + a*AppellF1[3/4, 1/4, 1, 7/4, Cos[e + f*x]^2, (b^2*Cos[e 
+ f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^(3/2)*(a + b*Sqrt[1 - Cos[e + f*x]^2 
])*Sin[e + f*x]^(3/2))/(3*(a^2 - b^2)*(1 - Cos[e + f*x]^2)^(3/4)*(a + b*Si 
n[e + f*x])) + ((a^2 - b^2)*Sqrt[Tan[e + f*x]]*((3*Sqrt[2]*a^(3/2)*(-2*Arc 
Tan[1 - (Sqrt[2]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]])/Sqrt[a]] + 2*ArcTan 
[1 + (Sqrt[2]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]])/Sqrt[a]] - Log[-a + Sq 
rt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] - Sqrt[a^2 - b^2]*Tan[e 
 + f*x]] + Log[a + Sqrt[2]*Sqrt[a]*(a^2 - b^2)^(1/4)*Sqrt[Tan[e + f*x]] + 
Sqrt[a^2 - b^2]*Tan[e + f*x]]))/(a^2 - b^2)^(1/4) - 8*b*AppellF1[3/4, 1/2, 
 1, 7/4, -Tan[e + f*x]^2, ((-a^2 + b^2)*Tan[e + f*x]^2)/a^2]*Tan[e + f*x]^ 
(3/2))*(b*Tan[e + f*x] + a*Sqrt[1 + Tan[e + f*x]^2]))/(12*a^2*Cos[e + f*x] 
^(3/2)*Sqrt[Sin[e + f*x]]*(a + b*Sin[e + f*x])*(1 + Tan[e + f*x]^2)^(3/2)) 
 + (Cos[2*(e + f*x)]*Sqrt[Tan[e + f*x]]*(b*Tan[e + f*x] + a*Sqrt[1 + Tan[e 
 + f*x]^2])*(56*b*(-3*a^2 + b^2)*AppellF1[3/4, 1/2, 1, 7/4, -Tan[e + f*x]^ 
2, (-1 + b^2/a^2)*Tan[e + f*x]^2]*Tan[e + f*x]^(3/2) + 24*b*(-a^2 + b^2)*A 
ppellF1[7/4, 1/2, 1, 11/4, -Tan[e + f*x]^2, (-1 + b^2/a^2)*Tan[e + f*x]^2] 
*Tan[e + f*x]^(7/2) + 21*a^(3/2)*(4*Sqrt[2]*a^(3/2)*ArcTan[1 - Sqrt[2]*...
 
3.15.37.3 Rubi [A] (verified)

Time = 1.94 (sec) , antiderivative size = 358, normalized size of antiderivative = 0.94, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.378, Rules used = {3042, 3381, 3042, 3043, 3051, 3042, 3052, 3042, 3119, 3385, 3042, 3384, 993, 1542}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))}dx\)

\(\Big \downarrow \) 3381

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}+\frac {a d^2 \int \frac {1}{(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}dx}{a^2-b^2}-\frac {b d \int \frac {\sqrt {d \sin (e+f x)}}{(g \cos (e+f x))^{3/2}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}+\frac {a d^2 \int \frac {1}{(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}dx}{a^2-b^2}-\frac {b d \int \frac {\sqrt {d \sin (e+f x)}}{(g \cos (e+f x))^{3/2}}dx}{a^2-b^2}\)

\(\Big \downarrow \) 3043

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}-\frac {b d \int \frac {\sqrt {d \sin (e+f x)}}{(g \cos (e+f x))^{3/2}}dx}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3051

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 \int \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}dx}{g^2}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 \int \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}dx}{g^2}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3052

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin (2 e+2 f x)}dx}{g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin (2 e+2 f x)}dx}{g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {a^2 d^2 \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {d \sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right )}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3385

\(\displaystyle -\frac {a^2 d^2 \sqrt {\sin (e+f x)} \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right ) \sqrt {d \sin (e+f x)}}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {a^2 d^2 \sqrt {\sin (e+f x)} \int \frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)} (a+b \sin (e+f x))}dx}{g^2 \left (a^2-b^2\right ) \sqrt {d \sin (e+f x)}}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 3384

\(\displaystyle \frac {4 \sqrt {2} a^2 d^2 \sqrt {\sin (e+f x)} \int \frac {g \cos (e+f x)}{(\sin (e+f x)+1) \sqrt {1-\frac {\cos ^2(e+f x)}{(\sin (e+f x)+1)^2}} \left ((a+b) g^2+\frac {(a-b) \cos ^2(e+f x) g^2}{(\sin (e+f x)+1)^2}\right )}d\frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)+1}}}{f g \left (a^2-b^2\right ) \sqrt {d \sin (e+f x)}}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 993

\(\displaystyle \frac {4 \sqrt {2} a^2 d^2 \sqrt {\sin (e+f x)} \left (\frac {\int \frac {1}{\sqrt {1-\frac {\cos ^2(e+f x)}{(\sin (e+f x)+1)^2}} \left (\sqrt {a+b} g-\frac {\sqrt {b-a} g \cos (e+f x)}{\sin (e+f x)+1}\right )}d\frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)+1}}}{2 \sqrt {b-a}}-\frac {\int \frac {1}{\sqrt {1-\frac {\cos ^2(e+f x)}{(\sin (e+f x)+1)^2}} \left (\sqrt {a+b} g+\frac {\sqrt {b-a} \cos (e+f x) g}{\sin (e+f x)+1}\right )}d\frac {\sqrt {g \cos (e+f x)}}{\sqrt {\sin (e+f x)+1}}}{2 \sqrt {b-a}}\right )}{f g \left (a^2-b^2\right ) \sqrt {d \sin (e+f x)}}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

\(\Big \downarrow \) 1542

\(\displaystyle \frac {4 \sqrt {2} a^2 d^2 \sqrt {\sin (e+f x)} \left (\frac {\operatorname {EllipticPi}\left (\frac {\sqrt {b-a}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {\sin (e+f x)+1}}\right ),-1\right )}{2 \sqrt {g} \sqrt {b-a} \sqrt {a+b}}-\frac {\operatorname {EllipticPi}\left (-\frac {\sqrt {b-a}}{\sqrt {a+b}},\arcsin \left (\frac {\sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt {\sin (e+f x)+1}}\right ),-1\right )}{2 \sqrt {g} \sqrt {b-a} \sqrt {a+b}}\right )}{f g \left (a^2-b^2\right ) \sqrt {d \sin (e+f x)}}-\frac {b d \left (\frac {2 (d \sin (e+f x))^{3/2}}{d f g \sqrt {g \cos (e+f x)}}-\frac {2 E\left (\left .e+f x-\frac {\pi }{4}\right |2\right ) \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{f g^2 \sqrt {\sin (2 e+2 f x)}}\right )}{a^2-b^2}+\frac {2 a d \sqrt {d \sin (e+f x)}}{f g \left (a^2-b^2\right ) \sqrt {g \cos (e+f x)}}\)

input
Int[(d*Sin[e + f*x])^(3/2)/((g*Cos[e + f*x])^(3/2)*(a + b*Sin[e + f*x])),x 
]
 
output
(4*Sqrt[2]*a^2*d^2*(-1/2*EllipticPi[-(Sqrt[-a + b]/Sqrt[a + b]), ArcSin[Sq 
rt[g*Cos[e + f*x]]/(Sqrt[g]*Sqrt[1 + Sin[e + f*x]])], -1]/(Sqrt[-a + b]*Sq 
rt[a + b]*Sqrt[g]) + EllipticPi[Sqrt[-a + b]/Sqrt[a + b], ArcSin[Sqrt[g*Co 
s[e + f*x]]/(Sqrt[g]*Sqrt[1 + Sin[e + f*x]])], -1]/(2*Sqrt[-a + b]*Sqrt[a 
+ b]*Sqrt[g]))*Sqrt[Sin[e + f*x]])/((a^2 - b^2)*f*g*Sqrt[d*Sin[e + f*x]]) 
+ (2*a*d*Sqrt[d*Sin[e + f*x]])/((a^2 - b^2)*f*g*Sqrt[g*Cos[e + f*x]]) - (b 
*d*((2*(d*Sin[e + f*x])^(3/2))/(d*f*g*Sqrt[g*Cos[e + f*x]]) - (2*Sqrt[g*Co 
s[e + f*x]]*EllipticE[e - Pi/4 + f*x, 2]*Sqrt[d*Sin[e + f*x]])/(f*g^2*Sqrt 
[Sin[2*e + 2*f*x]])))/(a^2 - b^2)
 

3.15.37.3.1 Defintions of rubi rules used

rule 993
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> 
With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2* 
b)   Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b)   Int[1/((r 
 - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
a*d, 0]
 

rule 1542
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x 
], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3043
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^( 
m_.), x_Symbol] :> Simp[(a*Sin[e + f*x])^(m + 1)*((b*Cos[e + f*x])^(n + 1)/ 
(a*b*f*(m + 1))), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 2, 0] & 
& NeQ[m, -1]
 

rule 3051
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(-(b*Sin[e + f*x])^(n + 1))*((a*Cos[e + f*x])^(m + 1) 
/(a*b*f*(m + 1))), x] + Simp[(m + n + 2)/(a^2*(m + 1))   Int[(b*Sin[e + f*x 
])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m 
, -1] && IntegersQ[2*m, 2*n]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3381
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^( 
n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a*(d^2/(a^2 
- b^2))   Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x], x] + (-Simp[ 
b*(d/(a^2 - b^2))   Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] 
 - Simp[a^2*(d^2/(g^2*(a^2 - b^2)))   Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[ 
e + f*x])^(n - 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d, e, f, g 
}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1 
]
 

rule 3384
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[sin[(e_.) + (f_.)*(x_)]]*((a_ 
) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[-4*Sqrt[2]*(g/f)   S 
ubst[Int[x^2/(((a + b)*g^2 + (a - b)*x^4)*Sqrt[1 - x^4/g^2]), x], x, Sqrt[g 
*Cos[e + f*x]]/Sqrt[1 + Sin[e + f*x]]], x] /; FreeQ[{a, b, e, f, g}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 3385
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[(d_)*sin[(e_.) + (f_.)*(x_)]] 
*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[Sqrt[Sin[e + f* 
x]]/Sqrt[d*Sin[e + f*x]]   Int[Sqrt[g*Cos[e + f*x]]/(Sqrt[Sin[e + f*x]]*(a 
+ b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2 
, 0]
 
3.15.37.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1184\) vs. \(2(346)=692\).

Time = 2.28 (sec) , antiderivative size = 1185, normalized size of antiderivative = 3.13

method result size
default \(\text {Expression too large to display}\) \(1185\)

input
int((d*sin(f*x+e))^(3/2)/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x,method=_R 
ETURNVERBOSE)
 
output
1/f*(d/((1-cos(f*x+e))^2*csc(f*x+e)^2+1)*(csc(f*x+e)-cot(f*x+e)))^(3/2)/(1 
-cos(f*x+e))^2*sin(f*x+e)^2*(EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a 
/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a^2*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2) 
*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+Ellipt 
icPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2 
))*a*b*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2 
)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/ 
2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+ 
csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f 
*x+e))^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^ 
(1/2)-a),1/2*2^(1/2))*a^2*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e) 
-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)-EllipticPi((-cot(f*x+e 
)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a*b*(-cot(f*x 
+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+c 
ot(f*x+e))^(1/2)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b 
^2)^(1/2)-a),1/2*2^(1/2))*a*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1 
/2)*(2+2*cot(f*x+e)-2*csc(f*x+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)+2*( 
-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(2+2*cot(f*x+e)-2*csc(f*x 
+e))^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticF((-cot(f*x+e)+csc(f*x+e 
)+1)^(1/2),1/2*2^(1/2))*a+2*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)...
 
3.15.37.5 Fricas [F(-1)]

Timed out. \[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\text {Timed out} \]

input
integrate((d*sin(f*x+e))^(3/2)/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, al 
gorithm="fricas")
 
output
Timed out
 
3.15.37.6 Sympy [F]

\[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {\left (d \sin {\left (e + f x \right )}\right )^{\frac {3}{2}}}{\left (g \cos {\left (e + f x \right )}\right )^{\frac {3}{2}} \left (a + b \sin {\left (e + f x \right )}\right )}\, dx \]

input
integrate((d*sin(f*x+e))**(3/2)/(g*cos(f*x+e))**(3/2)/(a+b*sin(f*x+e)),x)
 
output
Integral((d*sin(e + f*x))**(3/2)/((g*cos(e + f*x))**(3/2)*(a + b*sin(e + f 
*x))), x)
 
3.15.37.7 Maxima [F]

\[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

input
integrate((d*sin(f*x+e))^(3/2)/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, al 
gorithm="maxima")
 
output
integrate((d*sin(f*x + e))^(3/2)/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + 
 a)), x)
 
3.15.37.8 Giac [F]

\[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int { \frac {\left (d \sin \left (f x + e\right )\right )^{\frac {3}{2}}}{\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (b \sin \left (f x + e\right ) + a\right )}} \,d x } \]

input
integrate((d*sin(f*x+e))^(3/2)/(g*cos(f*x+e))^(3/2)/(a+b*sin(f*x+e)),x, al 
gorithm="giac")
 
output
integrate((d*sin(f*x + e))^(3/2)/((g*cos(f*x + e))^(3/2)*(b*sin(f*x + e) + 
 a)), x)
 
3.15.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(d \sin (e+f x))^{3/2}}{(g \cos (e+f x))^{3/2} (a+b \sin (e+f x))} \, dx=\int \frac {{\left (d\,\sin \left (e+f\,x\right )\right )}^{3/2}}{{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\left (a+b\,\sin \left (e+f\,x\right )\right )} \,d x \]

input
int((d*sin(e + f*x))^(3/2)/((g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))),x 
)
 
output
int((d*sin(e + f*x))^(3/2)/((g*cos(e + f*x))^(3/2)*(a + b*sin(e + f*x))), 
x)